MongoDB Overview and Best Practices
MongoDB is a popular NoSQL database known for its flexibility and scalability. This document covers the basics of MongoDB, including creation, CRUD operations, optimization techniques, and practical application scenarios.
Creating a MongoDB Database
- Automatic Creation: MongoDB creates a database when you first store data in that database (such as creating a new collection).
-
Using a Database: Use the
use
command to switch to a specific database. If it doesn’t exist, MongoDB creates it when you first store data.use myNewDatabase
-
Inserting Data: Use
insertOne
orinsertMany
to insert data.db.collectionName.insertOne({ name: "John Doe", age: 30 }) db.collectionName.insertMany([{ name: "Alice", age: 25 }, { name: "Bob", age: 27 }])
CRUD Operations
Create
-
insertOne
: Inserts a single document into a collection.db.collectionName.insertOne({ name: "John Doe", age: 30 })
-
insertMany
: Inserts multiple documents into a collection.db.collectionName.insertMany([{ name: "Alice", age: 25 }, { name: "Bob", age: 27 }])
Read
-
findOne
: Finds the first document that matches the query.db.collectionName.findOne({ name: "John Doe" })
-
find
: Finds all documents that match the query.db.collectionName.find({ age: { $gt: 25 } })
Update
-
updateOne
: Updates the first document that matches the query.db.collectionName.updateOne({ name: "John Doe" }, { $set: { age: 31 } })
-
updateMany
: Updates all documents that match the query.db.collectionName.updateMany({ age: { $gt: 25 } }, { $set: { isActive: true } })
Delete
-
deleteOne
: Deletes the first document that matches the query.db.collectionName.deleteOne({ name: "Alice" })
-
deleteMany
: Deletes all documents that match the query.db.collectionName.deleteMany({ age: { $lt: 30 } })
Aggregation
- Aggregations process data records and return computed results.
$match
: Filters the documents to pass only those that match the specified condition(s) to the next pipeline stage.-
$group
: Groups input documents by a specified identifier expression and applies the accumulator expression(s), such as$sum
, to each group.db.collectionName.aggregate([ { $match: { isActive: true } }, { $group: { _id: "$age", count: { $sum: 1 } } } ])
Indexing
- Why Indexing: Indexes support the efficient execution of queries. Without indexes, MongoDB must perform a collection scan.
-
Creating an Index: Use
createIndex
to create an index on a field or fields.db.collectionName.createIndex({ name: 1 })
- When to Use Indexing: Indexing is critical for read-heavy databases or collections with large amounts of data and complex query patterns.
Different Types of Indexes in MongoDB
MongoDB offers various types of indexes to optimize query performance. Choosing the right type of index can significantly improve the efficiency of database operations.
Single Field Index
-
Index on a single field of a document.
db.collectionName.createIndex({ fieldName: 1 }) // 1 for ascending order, -1 for descending
Compound Index (Composite Index)
-
Index on multiple fields of a document.
db.collectionName.createIndex({ field1: 1, field2: -1 })
Multikey Index
-
Index on an array field. MongoDB creates separate index entries for each element of the array.
db.collectionName.createIndex({ arrayField: 1 })
Text Index
-
For efficient searching of string content. It supports searching for words and phrases.
db.collectionName.createIndex({ textField: "text" })
Geospatial Index
- Indexes for storing geospatial data (e.g., 2D coordinates or spherical surface data).
-
Two types:
2d
for two-dimensional planes and2dsphere
for spherical surfaces.// For 2D coordinates db.collectionName.createIndex({ locationField: "2d" }) // For spherical surfaces db.collectionName.createIndex({ locationField: "2dsphere" })
Hashed Index
-
Indexes field values using a hash function. Useful for sharding and random access patterns.
db.collectionName.createIndex({ fieldToHash: "hashed" })
Each index type has its specific use case and performance characteristics. Understanding when and how to use these indexes can greatly enhance the performance of MongoDB operations.
Sharding for Horizontal Scaling
- Sharding is used for distributing data across multiple machines. It is a method for handling data sets that are too large for a single server.
Practical Application Scenarios
E-commerce Website
- Scenario: A large e-commerce site with a massive amount of transactions.
- Use of Sharding: Shard on
customerId
ortransactionDate
to distribute data and balance load.
Social Media Analytics
- Scenario: A social media analytics platform dealing with real-time data.
- Use of Sharding: Shard on
postId
orchannelId
for efficient real-time data processing.
Performance Monitoring with explain()
- The
explain()
method provides information about how MongoDB executes a query. -
It can be used to understand the query execution plan, including whether indexes were used.
db.collectionName.find({ age: { $gt: 30 } }).explain("executionStats")
- Example Use: If a query is running slower than expected,
explain()
can help identify whether the query is using an index or performing a full collection scan, allowing for appropriate optimization strategies to be applied.
MongoDB offers a flexible and powerful platform for a variety of applications, emphasizing scalability and performance optimization.